تجزیه وتحلیل یخبندان های استان کرمانشاه با استفاده از شبکه های عصبی مصنوعی

پایان نامه
چکیده

در این مطالعه با استفاده از داده های دما حداقل روزانه در دوره آماری 21 ساله به پیش بینی یخبندان های استان کرمانشاه با استفاده از شبکه های عصبی پرداخته شده است. داده های مورد استفاده از طریق تابعی یک به یک و پوشا به منظور تعیین معیاری جهت پیش بینی یخبندان به مقادیر بین صفر و یک تبدیل شده و از شبکه تغزیه پیشرفتی با یک لایه میانی مخفی با تعداد نورون های متغیر برای هر یک از ایستگاه ها به پیش بینی و بالاخره تعیین بازه های یخبندان پرداخته شد. الگوریتم مورد استفاده در این پژوهش، پس انتشار با روش آموزش دسته ای و توابع انتقال satlins، logsig و satlin بوده است. تعیین بازه های یخبندان و بدون یخبندان در هر یک از ایستگاه های سینوپتیک و پیش بینی یخبندان های زودرس و دیررس از نتایج این مطالعه بوده و شبکه طراحی شده بین 22.72 تا 55.88 درصد برای هر ایستگاه همگرایی داشته است. نتایج نشان می دهد با توجه به محدودیت داده ها، شبکه های عصبی mlp توانایی مطلوبی در پیش بینی و تخمین یخبندان ها دارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی پتانسیل اراضی استان کرمانشاه جهت کشت گندم دیم با استفاده از شبکه عصبی مصنوعی

با افزایش روزافزون جمعیت و نیاز به مواد غذایی، گندم به­عنوان محصولی با بیشترین سطح زیر کشت و تولید سالانه در مقیاس جهانی از اهمیت ویژه‌ای برخوردار بوده است لذا شناسایی و معرفی مناطق مساعد کشت آن در هر منطقه ضروری است. استان کرمانشاه به‌عنوان محدوده مورد مطالعه یکی از مناطق حاصلخیزی است که بیشترین کشت گندم را در بین محصولات زراعی دارد. بدین منظور در این مطالعه از شبکه عصبی پرسپترون چندلایه (MLP)...

متن کامل

تخمین تابش کلی خورشید در استان کرمانشاه با استفاده از شبکه های عصبی مصنوعی

هدف مطالعه حاضر توسعه یک مدل شبکه عصبی مصنوعی (ann) بر اساس روش رگرسیون غیرخطی چندگانه (mnlr) برای تخمین میانگین ماهانه مجموع روزانه تابش کلی خورشید در هر محل از استان کرمانشاه است. برای این منظور، داده های هواشناسی 23 ایستگاه در استان کرمانشاه در طول سالهای 1392- 1387 جمع آوری شد که از این بین، داده های 17 ایستگاه برای آموزش و 6 ایستگاه برای تست شبکه استفاده شد. در مرحله اول، همه متغیرهای مستق...

متن کامل

تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی

وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را به‌صورت تغییر در میزان الکترون، چگالی یون‌ها، میدان‌های الکتریکی و مغناطیسی این لایه نشان می‌دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه‌های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به‌عنوان پیش‌نشانگر شناخته می‌شود...

متن کامل

تخمین کریپ کمپلینس مخلوط های آسفالتی با استفاده از شبکه های عصبی مصنوعی

یکی از آزمایش‌های اساسی در فرایند طراحی روسازی‌های انعطاف‌پذیر به روش مکانیستیک- تجربی در آشتو 2002، آزمایش کریپ کمپلینس است. در این تحقیق مدلی جدید برای تخمین کریپ کمپلینس مخلوط‌های آسفالتی با استفاده از شبکه‌های عصبی مصنوعی پرسپترون چند لایه، با تکنیک آموزش لونبرگ- مارکوات، با توان تعمیم پذیریR=0.949 ، با موفقیت ارائه شده است. این مدل 14 ورودی شامل درصدهای عبوری انتخابی از منحنی دانه‌بندی ...

متن کامل

برآورد رسوبات معلق با استفاده از شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز جامیشان استان کرمانشاه)

پدیده­­های فرسایش و انتقال رسوب در رودخانه­ها یکی از مهمترین و پیچیده­ترین موضوعات مهندسی رودخانه می­باشد. این پدیده­ها اثرات ویژه­ای روی شاخص های کیفی آب، کنش کف بستر و کناره های رودخانه داشته و همچنین خسارات جبران ناپذیری به طرح های عمرانی آب وارد می­نماید. پیش­بینی دقیق میزان رسوب رودخانه­ها اهمیت قابل توجهی در مدیریت منابع آب و طراحی و ساخت و همچنین برنامه ریزی در بهره برداری از سازه­های آب...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه تربیت معلم - سبزوار - دانشکده ادبیات و علوم انسانی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023